A Family of 1D Chaotic Maps without Equilibria

نویسندگان

چکیده

In this work, a family of piecewise chaotic maps is proposed. This parameterized by the nonlinear functions used for each piece mapping, which can be either symmetric or non-symmetric. Applying constraint on shape piece, generated have no equilibria and showcase behavior. thus belongs to category systems with hidden attractors. Numerous examples are provided, showcasing fractal-like, symmetrical patterns at interchange between non-chaotic Moreover, application proposed pseudorandom bit generator successfully performed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

On a family of maps with multiple chaotic attractors

Multistability is characterized by the occurrence of multiple coexisting attractors. We introduce a family of maps that possess this property and in particular exhibits coexisting chaotic attractors. In this family not only the maps’ parameters can be varied but also their dimension. So, four types of multistable attractors, equilibria, periodic orbits, quasi-periodic orbits and chaotic attract...

متن کامل

Watermarking Scheme Based on Multiple Chaotic Maps

a watermarking scheme for Grayscale image isproposed based on a family of the chaotic maps and discretecosine transform. Jacobian Elliptic mapis employed to encrypt ofwatermarked logo. Piecewise nonlinear chaotic map is also usedto determine the location of DCT coefficients for the watermarkembedding. The purpose of this algorithm is to improve theshortcoming of watermarking such as small key s...

متن کامل

Nonuniformly Expanding 1D Maps

This paper attempts to make accessible a body of ideas surrounding the following result: Typical families of (possibly multi-model) 1-dimensional maps passing through “Misiurewicz points” have invariant densities for positive measure sets of parameters. The simplest paradigms of chaotic behavior in dynamical systems are found in uniformly expanding and uniformly hyperbolic (or Anosov) maps. All...

متن کامل

High Density Nodes in the Chaotic Region of 1D Discrete Maps

We report on the definition and characteristics of nodes in the chaotic region of bifurcation diagrams in the case of 1D mono-parametrical and S-unimodal maps, using as guiding example the logistic map. We examine the arrangement of critical curves, the identification and arrangement of nodes, and the connection between the periodic windows and nodes in the chaotic zone. We finally present seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15071311